Use Energy Less and Wisely

Kang G. Shin Department of EECS The University of Michigan

HP Sustainable IT Workshop—10/20/08

Key Questions and Approaches

- How to use only the amount of energy required by the underlying applications without any waste?
 - =>Top-down approach
- How to extend the lifetime of energy source?=> Manage it well

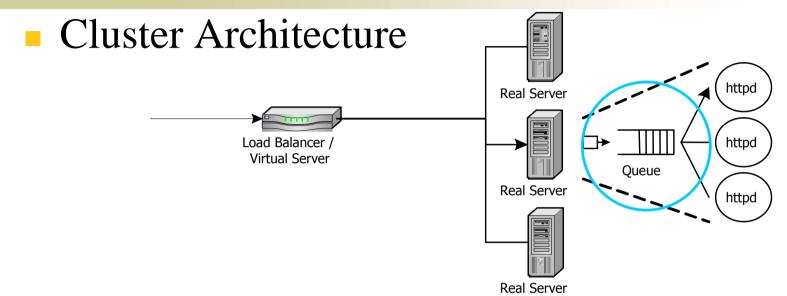
2

Use only as much as you need

- Top-down approach
- Server clusters
- Single Server

. . . .

Server components



Server Clusters

- Server clusters must provide availability and capacity needed by applications.
- Capacity is usually statically and conservatively estimated to handle peak load, but...
 - Servers are under-utilized (excessive equipment purchase)
 - Powering and cooling costs are increasing (recurring cost)
 - Capacity need changes dynamically
- With accurate estimation of capacity need, datacenters can dynamically allocate resources to services/apps.
 - Improve utilization (can host more services/apps)
 - Reduce energy cost (turn off unused servers)
 - Ensure service quality (meet SLAs)

Server Cluster Model

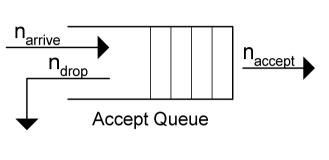
- Sustainable throughput := maximal throughput subject to meeting certain thresholds of performance metrics
- Capacity is determined by
 - Server configuration (hardware, software)
 - Request arrival process, type of requests (dynamic, static)
 - Users' performance expectations (patience)
 - Queue size

Definition of Capacity

Capacity

The max throughput while keeping the request drop ratio under a customer-specified threshold

Request Drop Ratio = # of failed connection attempts / # of connection attempts



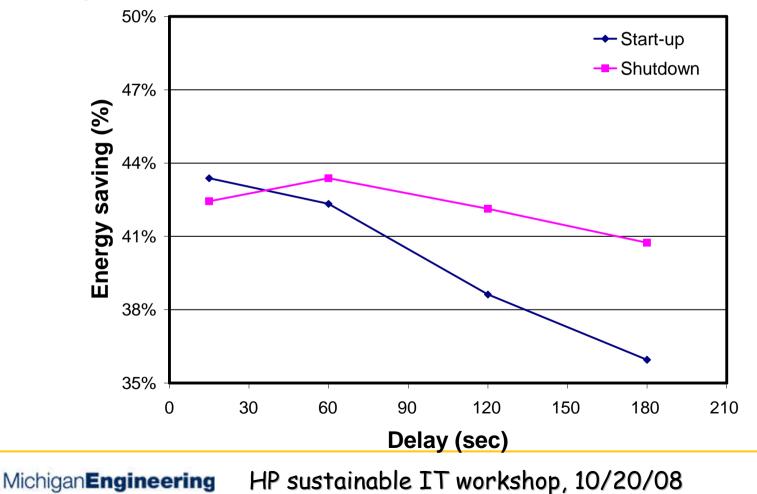
Queue Monitoring for Capacity Estimation

- Avoiding SYN retransmissions is key to dynamic cluster sizing
 - Need to predict when retransmissions become likely, i.e., when capacity is too low
- Estimate time needed to fill the queue $t_{fill} = \begin{cases} K / (\lambda_{max} - c) & \text{if } \lambda_{max} > c \\ \text{undefined} & \text{otherwise} \end{cases}$
- Estimate avg queue length that causes overflows
- Capacity is estimated by

$$c' = \begin{cases} \mu & \text{if } \varepsilon \ge \varepsilon_{th} \\ c \cdot \alpha + \mu \cdot (1 - \alpha) & \text{if } \varepsilon < \varepsilon_{th} \text{ and } \begin{cases} \min(\overline{\ell}, \hat{\ell}) \ge \ell_{th} \land c > \mu, \text{ or} \\ \max(\overline{\ell}, \hat{\ell}) < \ell_{th} \land c < \mu \end{cases}$$

$$\ell_{th} = \begin{cases} \frac{K \cdot \lambda_{\max} \cdot t_{fill}}{2(c(T - t_{fill}) + \lambda_{\max} \cdot t_{fill})} & \text{if } t_{fill} \le T\\ \frac{[K - (\lambda_{\max} - c)T] + K}{2} & \text{if } t_{fill} > T \end{cases}$$

Take-aways from cluster level


- *Capacity*: sustainable throughput with <1% SYN drop
 - Ensured client-perceived performance
 - Easy to measure and control
 - Three different estimation methods: off-line, CPU-based, and queuemonitoring.
- Queue-monitoring yielded superior results
 - Applicable to diverse and changing workloads
 - Low-overhead no need to look for lower-overhead solutions
- Energy-conservation
 - Up to 44% energy savings with simple capacity-based controller
 - No prior knowledge is required
 - Short start-up and shutdown delays benefit energy conservation

Start-up and Shutdown Delay

 Long start-up and shutdown delay reduced the benefits of cluster resizing.

Single Server—tougher problem

- Consists of CPU(s), memory, disks, and network interfaces
- How to coordinate usage of these components to reduce energy consumption and meet application requirements?
 - Low-hanging fruits: do this for each component in isolation
 - High-hanging (unreachable) fruits: do this for all components cooperatively.

Low-hanging Fruit 1: CPU

How to reduce CPU's power consumption?

Hardware:

- Limit parallelism and speculative execution
- Improve circuit technology
- Software:
 - Perform fewer computations
 - Improve algorithms and mechanisms

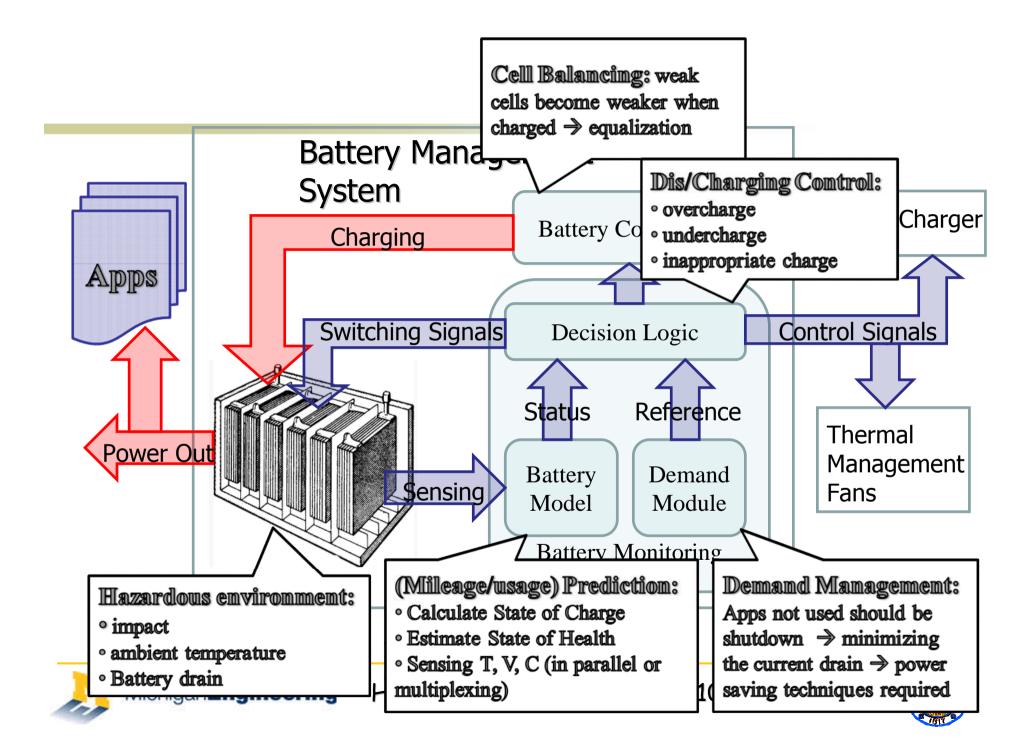
Use only as much of CPU as needed

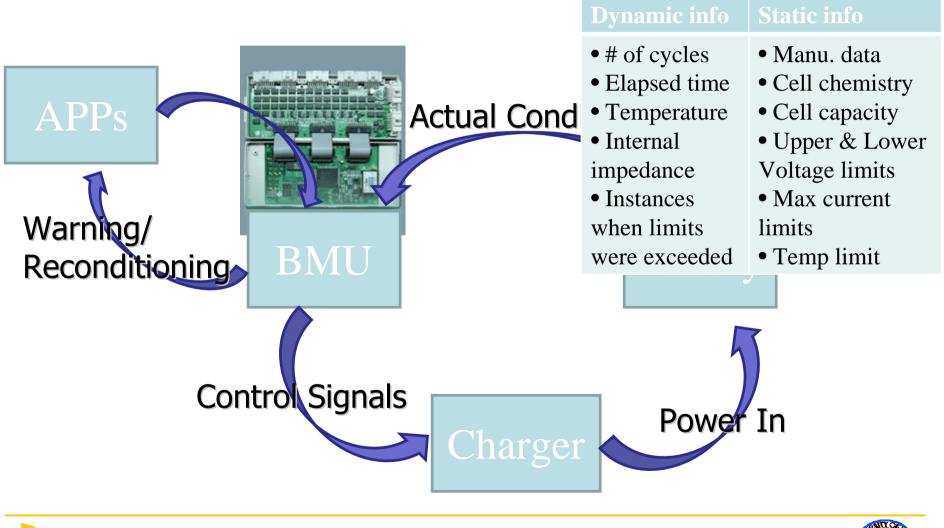
- Example: real-time DVS (RT-DVS)
 - DVS algorithms that maintain RT guarantees
 - Simple enough for online scheduling
 - Work closely with existing RT sched algs.

Max bang out of fixed engery budget

- Many technologies and techniques to save energy, but few guidelines on how to use different techniques to make best of the limited energy resource
- Energy-aware QoS (EQoS) formulates this into a tractable, optimal-selection problem:
 - Leveraging halt and DVS techniques
 - Task and QoS adaptation
 - Meeting system runtime goals
 - Maximizing benefits/utility

LH Fruit 2: Power-Aware Virtual Memory


- Modern memory devices operate in multiple power levels at different latencies.
- Elevate the decision making of managing power-state of modules onto an OS level.
- Apply NUMA concepts in a novel way
 - Use a NUMA management layer to abstract physical memory allocation to reduce the power dissipation of memory on a per-process basis.
 - Use advanced techniques such as shared library aggregation and page migration to further reduce the power dissipation of memory.


LH Fruit 3: Utilizing Free Disk Space

- Un-utilized disk space is abundant but a waste!
- What should we do with free disk space?
- FS2 [SOSP'06], an efficient solution:
 - Store replicas of poorly-placed disk blocks in free space
 - Replicas can be accessed in addition to their original
- What are the benefits of replication?
 - Improves performance
 - Reduces energy-consumption

Control Flow: Feedback Loop

Michigan Engineering HP sustainable IT workshop, 10/20/08

Research Problems

- Microscopic mechanisms:
 - Cell balancing: cell-charge equalizing mechanism

150

100

Lightweight

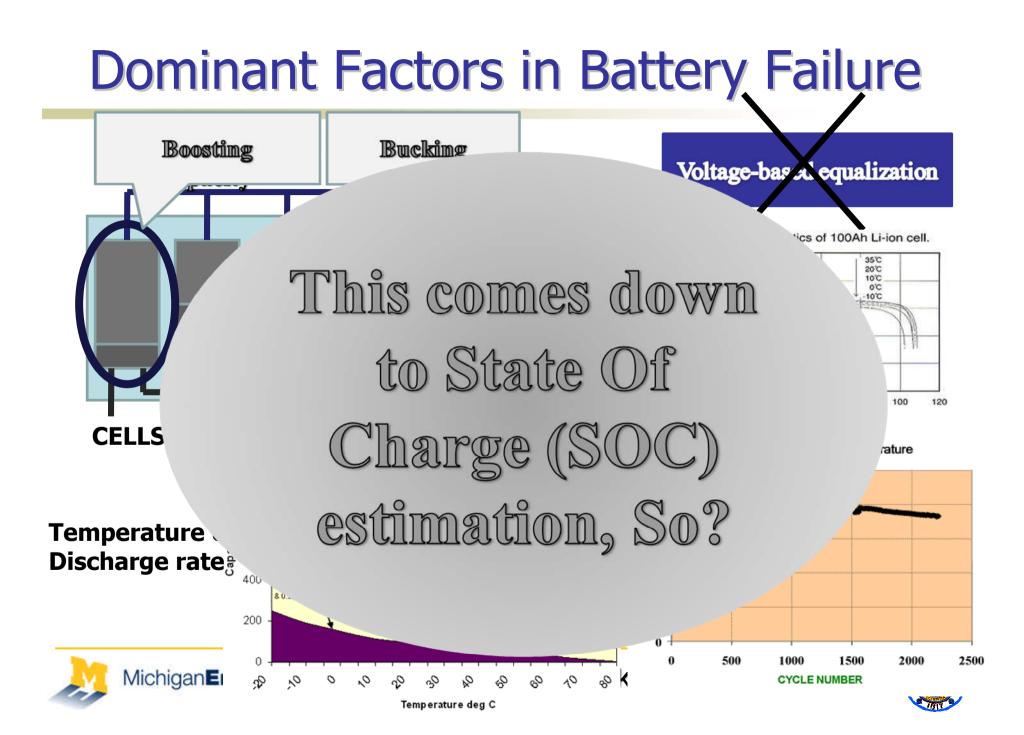
25

50

- Diagnosis of state of health
- Prevention of overcharging & undercharging
- Macroscopic mechanisms:
 - Monitoring → Diagnostics → Detection →
 Reconfiguration → Prevention → Monitoring
- Battery Model: Prediction of how many miles the vehicle may run, state of health, state of charge, and driving patterns

Lithium ion

Small size


125

Nickel Metal Hydride

100

Nickel Cadmium

75

Conclusions

- Energy is precious for economic and environmental reasons
- So, use it only when and as much as you need, especially for large datacenters, vehicles, homes & buildings
- The lifetime of energy source can be extended by conserving its usage as well as monitoring and controlling it.

